A novel in-silico model explores LanM homologs among Hyphomicrobium spp

James J. Valdés^{1,2}, Daniel A. Petrash^{3,4} & Kurt O. Konhauser⁵

¹Institute of Parasitology, Biology Centre, CAS, České Budějovice, Czechia
²Centre Algatech, Institute of Microbiology, CAS, Třeboň, Czechia
³Department of Environmental Geochemistry and Biogeochemistry, Czech Geological Survey, Prague 5, Czechia
⁴Institute of Soil Biology and Biogeochemistry, Biology Centre, CAS, České Budějovice, Czechia
⁵Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB, Canada

Investigating microorganisms in metal-enriched environments holds the potential to revolutionize the sustainable recovery of critical metals such as lanthanides (Ln^{3+}). We observe *Hyphomicrobium* spp. as part of a Fe²⁺/Mn²⁺-oxidizing consortia native to the ferruginous bottom waters of a Ln³⁺-enriched lake in Czechia. Notably, one species shows similarities to recently discovered bacteria expressing proteins with picomolar Ln³⁺ affinity. This finding was substantiated by developing an in-silico ionic competition model and recombinant expression of a homolog protein (*Hm*-LanM) from *Hyphomicrobium methylovorum*. Biochemical assays validate *Hm*-LanM preference for lighter Ln³⁺ ions (from lanthanum to gadolinium). This is comparable to established prototypes. Bioinformatics analyses further uncover additional *H. methylovorum* metabolic biomolecules in genomic proximity to *Hm*-LanM analogously dependent on Ln³⁺, including an outer membrane receptor that binds Ln³⁺-chelating siderophores. These combined observations underscore the remarkable strategy of *Hyphomicrobium* spp. for thriving in relatively Ln³⁺ enriched zones of metal-polluted environments.