Modeling Regulation Mechanisms of N₂ Fixation in *Trichodesmium*: From PhD Research to Future Perspectives

Weicheng Luo^{1, 2}, Ondřej Prášil², Meri Eichner², Keisuke Inomura³, Futing Zhang², Ya-Wei Luo¹ ¹State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China.

²Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň 37901, Czech Republic.

³Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882, USA.

E-mail: weicheng123@stu.xmu.edu.cn

 N_2 fixation is a key process in the marine nitrogen cycle, contributing to primary productivity and carbon sequestration. *Trichodesmium*, a dominant diazotrophic cyanobacterium, performs both N_2 fixation and photosynthesis concurrently during the daytime. This study investigates its regulatory mechanisms using physiological modeling, focusing on intracellular O_2 management, dynamic membrane O_2 permeability, dynamic Fe allocation, and responses to ocean acidification.

(1) **Intracellular O₂ Management**: Our model suggests that temporal segregation of photosynthesis and N₂ fixation can establish the low-O₂ window required for N₂ fixation without spatial segregation. Respiratory protection and alternative electron transfer further facilitate O₂ management.

(2) **Dynamic Membrane O₂ Permeability**: *Trichodesmium* modulates O_2 permeability via hopanoids. High permeability during photosynthesis accelerates O_2 diffusion, reducing photorespiration, while low permeability during N_2 fixation minimizes O_2 stress on nitrogenase, improving carbon and Fe use efficiency.

(3) **Dynamic Fe Allocation**: Diurnal Fe reallocation enhances N₂ fixation by optimizing Fe and carbon use. Fe between photosynthesis and nitrogenase reduces nitrogenase inactivation and lowers respiratory protection requirement, improving carbon and Fe use efficiency.

(4) **Response to Ocean Acidification**: Acidification impairs trichome N₂ fixation due to nitrogenase inefficiency and reduced energy production. However, colonies remain resilient, likely due to enhanced Fe acquisition and reduced NH₃/Cu toxicity.

These findings elucidate *Trichodesmium*'s physiological adaptations and contribute to improving global biogeochemical models with N₂ fixation.

Keywords: Trichodesmium; N2 fixation; O2; Fe; Ocean acidification.