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The acquisition and assimilation of inorganic C have been investigated in
several of the 15 clades of the Ochrophyta other than diatoms, with biochemi-
cal, physiological and genomic data indicating significant mechanistic
variation. Form ID Rubiscos in the Ochrophyta are characterized by a broad
range of kinetics values. In spite of relatively high K0.5CO2 and low CO2 : O2

selectivity, diffusive entry of CO2 occurs in the Chrysophyceae and Synuro-
phyceae. Eustigmatophyceae and Phaeophyceae, on the contrary, have CO2

concentrating mechanisms, usually involving the direct or indirect use of
HCO!3 . This variability is possibly due to the ecological contexts of the organ-
ism. In brown algae, C fixation generally takes place through a classical C3
metabolism, but there are some hints of the occurrence of C4 metabolism
and low amplitude CAM in a few members of the Fucales. Genomic data
show the presence of a number of potential C4 and CAM genes in Ochrophyta
other than diatoms, but the other core functions of many of these genes
give a very limited diagnostic value to their presence and are insufficient to
conclude that C4 photosynthesis is present in these algae.

This article is part of the themed issue ‘The peculiar carbon metabolism
in diatoms’.

1. Introduction
Stramenopile eukaryotes comprise a diverse clade with a great range of nutri-
tional modes [1] (table 1). Ochrophyta (i.e. Ochrista) is a diverse phylum of
stramenopiles; most of the ochrophytan clades (16 in [5]) are photosynthetic
or have photosynthetic members. The rest of the stramenopiles, the ecologically
and economically very significant oomycetes and some others clades (a total of
8 in [2]), are all non-photosynthetic. The phylogenetic relations among these
organisms are discussed by Baurain et al. [6], Brown & Sorhannus [7], Beakes
et al. [2], Schmidt et al. [8] and Yang et al. [5].

The Bacillariophyceae is the best-investigated class of ochrophytes with
respect to inorganic C acquisition and assimilation, showing the widespread
occurrence of CO2 concentrating mechanisms (CCMs) and of pyrenoids, ener-
gized transport of HCO!3 and limited support for C4 or C4-like photosynthetic
metabolism [9–12]. The emphasis on diatoms is reasonable in view of their
phylogenetic and ecological diversity [13] and their contribution to global biogeo-
chemical cycles (e.g. a marine diatom net primary productivity of about 20 Pg C
per year [14]). However, there are 15 (possibly more) other ochrophyte classes
with photosynthetic members [5–8,15]. The benthic marine macroalgal Phaeo-
phyceae play a major role in primary productivity and as ecosystem engineers
on rocky shores, especially in temperate and polar regions, with several species
exceeding 10 m in length [16]. The Chrysophyceae and Synurophyceae are signifi-
cant in the phytoplankton of acidic and often CO2-enriched freshwaters [3,17–19],
the microalga Nannochloropsis (Eustigmatophyceae) is being assessed for its bio-
technological potential [20–22] and members of the Pelagophyceae and
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Raphidophyceae can form harmful algal blooms [23]. Here we
synthesize what is known about inorganic carbon acquisi-
tion and assimilation in these non-diatom ochrophytes for
comparison with what is known for diatoms.

2. Mechanisms of inorganic C influx: CO2
diffusion and biophysical CO2 concentrating
mechanisms

Diffusive CO2 entry from the bulk phase to ribulose-1,5-
bisphosphate carboxylase-oxygenase (Rubisco) is driven by a
concentration difference produced by the photosynthetic con-
sumption of CO2 that produces a lower CO2 concentration in
the proximity of Rubisco active sites than in the bulk phase sup-
plying the CO2. Here the energization of the flux is indirect,
coming from the use of absorbed photons for the reduction
of NADPþ to NADPH and the phosphorylation of ADP to
ATP; the NADPH and ATP are then used in CO2 assimilation
producing, in the first instance, carbohydrate. Under these cir-
cumstances, the CO2 concentration and the CO2: O2 ratio at the
Rubisco site typically allow significant Rubisco oxygenase
activity and a corresponding operation of a photorespiratory C
oxidation cycle that converts the 2-P-glycolate from Rubisco oxy-
genase into triose phosphate, with input of energy, directly or
indirectly, from the thylakoid reactions of photosynthesis [24].

The functioning of CCMs, by definition, involves a higher
steady state concentration of CO2 at the site of Rubisco than
occurs in the bulk medium. This transport of CO2 against the
free energy (concentration) gradient is energized indepen-
dently of the energy input to the conversion of CO2 to
carbohydrate. This is the case for both the biophysical (ener-
gized, uphill transport of HCO!3 or CO2 or Hþ across a cell
membrane) and the biochemical (C4 photosynthesis or
Crassulacean acid metabolism, CAM) CCMs. This parallel
input of energy comes ultimately from the thylakoid reactions
of photosynthesis, but sometimes indirectly via photosynthate
production and its catabolism through glycolysis and the mito-
chondrial reactions [24]. Generally, despite the occurrence of
CCMs, the CO2: O2 ratio at the Rubisco active site is not
higher enough to prevent a small flux of organic C through
Rubisco oxygenase and a photorespiratory C oxidation cycle
that adds to the energy cost [25], as does the inevitable leakage
of some of the CO2 accumulated at the Rubisco site [24,26,27].

3. Inorganic C acquisition in Ochrophyta other
than diatoms

(a) Introduction
There is substantial physiological evidence on the mechanism
of inorganic carbon acquisition for a number of classes of
the Ochrophyta, i.e. Chrysophyceae, Eustigmatophyceae,
Phaeophyceae and Synurophyceae, with a little information
available for a few other classes; genomic data are also avail-
able for the Eustigmatophyceae and the Phaeophyceae. We
also discuss the occurrence of pyrenoids, showing that pyre-
noids are not always required for stramenopile CCMs [9,28],
and there can be pyrenoids but no obvious CCM activity [3].

A common rationale for the occurrence of diffusive CO2

entry or of a CCM is the natural external CO2 and O2 con-
centrations and the kinetics and intracellular content of
Rubisco. There is considerable variation in the kinetics, e.g.
K0.5 for CO2, K0.5 for O2 and CO2: O2 selectivity, among the
form ID Rubiscos in the Ochrophyta (table 2), as well as vari-
ations in the CO2-saturated rate of CO2 fixation per gram of
Rubisco protein, with high CO2-saturated specific reaction
rates being generally associated with high K0.5 for CO2 and
a low CO2 : O2 selectivity (¼ Srel or t) [35]. However, signifi-
cant variations of K0.5(CO2) and CO2 : O2 selectivity may
occur within the mechanistic possibilities suggested by
Tcherkez et al. [35]; this is the case for diatoms [29], in
which there is evidence of positive selection of Rubisco
[36]. Diffusive CO2 entry is more likely in organisms whose
Rubiscos have a relatively low K0.5(CO2) and a high CO2:
O2 selectivity; diffusive CO2 entry would be particularly
favoured if there is a CO2 subsidy from the terrestrial catch-
ment groundwater supply to rivers and some small lakes
[37,38]. By contrast, Rubiscos with a high K0.5(CO2) and a
low CO2: O2 selectivity combined with no CO2 subsidy and
approximately air-equilibrium CO2 and O2 concentrations
would be compatible with the occurrence of a CCM. The
data in table 2 show that this expectation is not always
met, with diffusive entry of CO2 in the Chrysophyceae and
Synurophyceae, and CCMs in the Eustigmatophyceae and
Phaeophyceae (see below). The occurrence of diffusive CO2

entry in organisms with relatively high Rubisco K0.5(CO2)
could be rationalized by the availability of sufficient energy,
N and P (for the RNA needed for protein synthesis) to
produce more Rubisco per cell and/or a large CO2 subsidy.

Table 1. Examples of modes of nutrition in the Ochrophyta. See Raven et al. [1] for definition of modes of nutrition.

nutritional mode example references

free-living osmoorganotrophy most Saprolegniales, e.g. Saprolegnia (oomycetes) [2]

symbiotic (all parasitic)a

osmoorganotrophy

perenosporalean clades, e.g. Phytophthorab (oomycetes); bicoecids; Cafeteria [2]

phagoorganotrophy some Chrysophyceae, e.g. Paraphysomonas [2]

photolithotrophy examples: Bacillariophyceae, Eustigmatophyceae, Phaeophyceae, Synurophyceae [3]

phagophotomixotrophy many Chrysophyceae [3,4]
aSymbiosis is used in the broad sense, including mutualism and parasitism.
bMajor parasite of flowering plants.
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(b) Chrysophyceae and Synurophyceae
The sister classes Chrysophyceae and Synurophyceae both have
diffusive CO2 transport from the bulk medium to Rubisco. Most
of the data relate to the Synurophyceae [3,17,31,39–42], with
some for the Chrysophyceae [3,41], which, as indicated in
table 1, are frequently phagomixotrophic [43].

The evidence on inorganic C entry includes pH drift.
Through this method, it was possible to show that the
photosynthetic activity of these algae can increase the pH
and deplete CO2 to values attributable to a diffusive CO2

entry. More direct estimates of relatively high CO2 com-
pensation concentrations from net photosynthetic rates as a
function of inorganic C concentration, as well as estimates
of photorespiration, support the view of inorganic carbon
acquisition in Chrysophyceae and Synurophyceae as mostly
due to CO2 diffusive entry driven by consumption of CO2

in the chloroplasts. For the two cases investigated (one
Chrysophyceae and one Synurophyceae), there is no exter-
nal carbonic anhydrase activity [3]. Vegetative cells of the
Synurophyceae and cysts of the Chrysophyceae and Synuro-
phyceae have extraprotoplasmic silicification, in common
with several other clades of the Ochrophyta, especially the
Bacillariophyceae and Bolidophyceae [44,45]. Among other
roles of silicification is that as a pH buffer facilitating Hþ

movement related to extracellular carbonic anhydrase activity
[46]; this cannot be the case in the Chrysophyceae and Synur-
ophyceae with no extracellular carbonic anhydrase. Despite
the lack of CCMs, pyrenoids occur in some Chrysophyceae
(Chromulina, but not Ochromonas) [3,9] and Synurophyceae
(e.g. Synura) [3,47].

For the Synurophyceae, there are also comparisons of the
in vitro K0.5 of Rubisco and in vivo photosynthesis. The form ID
Rubiscos of the Synurophyceae have K0.5 values (mmol m23)
in vitro of 18.2 (Mallomonas papulosa), 28.4 (Synura petersenii)
and 41.8 (Synura uvella) [31]. The photosynthetic K0.5(CO2)
are 92.0–440.5 mol m23 for M. papillosa (varying with the
buffer used to maintain the pH at 7.0), 40.4–43.7 mol m23

(varying with pH 6–7) for S. petersenii and 44.9–209 mol m23

for S. uvella (varying with pH 6–7) [31]. The in vivo photosyn-
thetic K0.5 values can be accommodated by the in vitro Rubisco
K0.5 with diffusive CO2 entry, granted a Rubisco content that
gives a Vmax for Rubisco equal to the Vmax for in vivo photo-
synthesis, and allowing for the necessary decrease in CO2

concentration along the diffusion pathway from the bulk
medium to Rubisco [41]. The Rubisco assays used unpurified

cell extracts [31], so the CO2-saturated Rubisco specific reaction
rate cannot be calculated.

(c) Eustigmatophyceae
Eustigmatophyceae appear to all have a CCM, when cells are
grown in culture media in equilibrium with the present atmos-
phere. The freshwater Eustigmatos vischeri and Vischeria stellata
can take up both CO2 and HCO!3 [48–50], while the soil-
dwelling Monodus subterraneus can only use CO2 [48,49]. Most
of the data are available for the marine Nannochloropsis spp.
(N. gaditana, N. oceanica and N. salina) and Monallatus sp.,
where mass spectrometric and other evidence show HCO!3
influx powered by mitochondrial respiration, with significant
simultaneous efflux of CO2 [48,49,51–58]. Merrett et al. [53]
showed that HCO!3 influx was inhibited by DIDS (4040-diisothio-
cyantostilbene-2,2-disulfonic acid), an inhibitor of anion
exchangers, and by the absence of Cl2, consistent with the
occurrence of a HCO!3 : Cl2 antiport of unknown stoichiometry.
The energized HCO!3 influx is downregulated when cells are
grown at high CO2 [58], consistent with decreased CCM
expression at high CO2 when diffusive CO2 entry can provide
as high a CO2 concentration at the active site of Rubisco as
does the CCM at lower external CO2 concentrations. However,
Merrett et al. [53] were unable to demonstrate a higher internal
than external inorganic C concentration using silicone oil cen-
trifugation, just as Huertas et al. [48,49] were unable to do from
CO2 efflux kinetics just after cessation of illumination. Huertas
et al. [48] suggest that the intracellular pool occupies a small frac-
tion of the cell volume and/or that Nannochloropsis Rubisco had,
like red algal Rubiscos, a low K0.5 for CO2. This latter suggestion
was verified by Tchernov et al. [30], who found a K0.5 for CO2 of
extracted Nannochloropsis sp. Rubisco of 7–10 mol m23, the
lowest values in table 2. This notwithstanding, the need for a
CCM exists in Nannochloropsis due to a very low CO2: O2 selectiv-
ity of 27 [30] and incomplete suppression of Rubisco oxygenase
activity in vivo [59]. Expressing the photosynthetic K0.5 for HCO!3
in terms of CO2 gives K0.5 values of 0.27 mmol m23 for
Monallantus sp. and 0.63 mmol m23 for Nanochloropsis gaditana
[52], i.e. an order of magnitude higher affinity than for the
Rubisco of Nannochloropsis sp. [30], indicating the involvement
of a CCM. Furthermore, the occurrence of a net CO2 efflux in
the light with all inorganic C entering as HCO!3 and high affi-
nities for inorganic C, a close approximation to inorganic C
saturation at seawater inorganic C concentration, a low (zero)

Table 2. In vitro kinetics of ochrophytan Rubiscos. n.d., not determined.

species class CCM
K0.5CO2

(mmol m23) K0.5O2 (mmol m23)
CO2/O2

selectivity references

11 species Bacillariophyceae þ 23 – 68 413 – 2032 57 – 116 [29]

Nannochlopsis sp. Eustigmatophyceae þ 7 – 10 about 1000 27 [30]

Mallomonas papillosa Synurophyceae 2 18.2 n.d. n.d. [31]

Synura petersenii Synurophyceae 2 28.4 n.d. n.d. [31]

Synura uvella Synurophyceae 2 41.8 n.d. n.d. [31]

4 species Phaeophyceae þ 12 – 43 n.d. n.d. [32]

Olisthodiscus luteus Raphidophyceae ? 45 – 59 692 101 [9,33,34]
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and O2-insensitive CO2 compensation point, a high ability to
photosynthesize at high pH and no inhibition of photosynthesis
by 21 kPa O2 relative to 2 kPa O2 means that there has to be a
higher internal than external CO2 concentration. Pyrenoids are
apparently universal in the Eustigmatophyceae (but see [60]),
in parallel with the occurrence of CCMs [61,62].

The genomic data show probable HCO!3 transporters of the
anion exchanger family at the plasmalemma (Nga00165.01)
and the chloroplast envelope (Nga06584) of Nannochloropsis
gaditana CCMP526 [21]; see www.nannochloropsis.org/
gene/Naga_10007g30 and www.nannochloropsis.org/gene/
Naga_10007g124. The Nannochloropsis oceanica CCMP1779
genome has two genes that resemble the LCIA 1595 in Chlamy-
domonas [63,64]: one is a chloroplast envelope carrier protein
(CCP), which is induced by low CO2 (CCMP1779_7325-
mRNA-1); the other is the LCIA protein (CCMP1779_6536-
mRNA-1), which belongs to the formate/nitrite transporter
family, has an unknown location and is also induced under
low CO2 [22]. Using the same strain of N. oceanica, Poliner
et al. [65] found two SL4 HCO!3 transporters. The SLC4
family from metazoans catalyses a variety of HCO!3 transport
processes, i.e. 1 HCO!3 : 1 Cl2 exchanger, 1 HCO!3 : 1 Naþ

cotransporter, 2 HCO!3 : 1 Naþ cotransporter, 3 HCO!3 : 1
Naþ cotransporter and a (2 HCO!3 þ 1 Naþ) : 1 Cl2 exchanger
[66]. Of these, only the 1 HCO!3 : 1 Naþ cotransporter could
lead to inorganic carbon accumulation in the cytosol, granted
the probable gradients of Naþ and Cl2 across the plasma-
lemma [67,68]. SLC4 HCO!3 transporters are also known
from the diatoms Phaeodactylum tricornutum and Thalassiosira
pseudonana and the brown alga Ectocarpus siliculosus [65].
The occurrence of SL4 HCO!3 transporters is not diagnostic
of CCMs since they are found in the C3 terrestrial flowering
plant Arabidopsis thaliana [65] and metazoans [66]. Li et al.
[69] found two low CO2-induced putative formate/nitrite
transporters in the plastid envelope of N. oceanica IMET1.

(d) Phaeophyceae
The largest ochristan algae occur in the Phaeophyceae [16]. The
final pH and corresponding equilibrium CO2 concentration
achieved in pH drift experiments with Phaeophyceae show
HCO!3 use or, less likely, energized accumulation of CO2 in
almost all cases [70–78], with the proviso that the final
pH may be restricted by pH per se rather than by limitations
on the removal of inorganic C from seawater [41,79]. Similar
conclusions arise from the meta-analysis by Stepien [80] of
d13C natural abundance of organic C of Phaeophyceae
collected from their natural habitats, with the proviso that
the 13CO2 : 12CO2 discrimination of the isolated Rubisco
of the only ochristan tested, the diatom Skeletonema costatum
[81], differs from that assumed by Stepien [80] and the authors
that she cites.

Of the intertidal and subtidal Phaeophyceae from the
northeast Atlantic examined by Johnston & Raven [82–84],
Surif & Raven [85,86] and Johnston [32], the intertidal species
(Fucales) show high affinities for inorganic C, a close approxi-
mation to inorganic C saturation at seawater inorganic C
concentration, a low (zero) and O2-insensitive CO2 compen-
sation concentration, a high ability to photosynthesize at high
pH and no inhibition of photosynthesis by 21 kPa O2 relative
to 2 kPa O2. By contrast, the subtidal Laminariales have a
lower affinity for inorganic C, lack of inorganic C satura-
tion at seawater inorganic C concentration, a higher and

O2-sensitive CO2 compensation concentration, a smaller
ability to photosynthesize at high pH and some inhibition of
photosynthesis by 21 kPa O2 relative to 2 kPa O2. These charac-
teristics indicate the occurrence of a CCM in all species; the
CCM of the Laminariales appears to be less developed in
terms of inorganic C affinity and O2 insensitivity of photosyn-
thesis than that of the Fucales. The work of Johnston & Raven
[82–84], Surif & Raven [85,86] and Johnston [32] involved
experiments under submersed and under emersed conditions
with (where identical treatments were used) closely similar
results, although the external availability of both HCO!3 and
CO2 in submersed experiments and external availability
of only CO2 in emersed experiments leaves unanswered
questions about the mechanism of inorganic C entry to cells.

Why, in ecological and evolutionary terms, is there this
difference between intertidal and subtidal brown algae in
the northeast Atlantic? We need to look at other possible
determinants of zonation, such as tolerance of desiccation,
especially for high-intertidal algae, which can be emersed
for long periods during neap tides [16]. One would expect
that desiccation tolerance would be important for high-
intertidal algae, especially when emersed for long periods
at spring tides. Surif & Raven [86] suggest that a high affinity
for inorganic C of intertidal brown algae in the NE Atlantic
increases the photosynthetic C gain per emersion period.
However, there are several intertidal (some very high interti-
dal) red algae lacking CCMs [41], e.g. Bostrychia arbuscula
(formerly Stictosiphonia arbuscula) in New Zealand in the
high-intertidal zone occupied by Pelvetia canaliculata, a
fucoid with a CCM, on NE Atlantic coasts [16,87].

The extent of suppression of Rubisco oxygenase and
hence of photorespiration by CCMs of Phaeophyceae has
been investigated by Surif & Raven [86] using a comparison
of photosynthetic rates as a function of CO2 from 50 to
950 mmol mol21 total gas with O2 at 20 or 210 mmol mol21

total gas. The photosynthetic rates of the five intertidal species
of the Fucaceae (Fucales) were unaffected by the different O2

levels [84] while those of the normally submerged Laminariales
and the normally submerged member of the Cystoseiraceae
(Fucales) were lower in 210 than in 20 mmol mol21 total gas at
all the CO2 levels tested [86]. The O2 inhibition of the normally
submerged algae differs from that of typical C3 physiology
plants by the absence of CO2–O2 competition.

Other data on O2 inhibition of photosynthesis in the
Phaeophyceae [88–92] show increased glycine and serine
production (as markers for the photorespiratory carbon oxi-
dation cycle) as a fraction of total inorganic C assimilated
with increasing O2 [90]. The presence of the photorespiratory
carbon oxidation cycle in the Phaeophyceae has been shown
by enzyme assays [93,94].

Much of the information on other members of the Phaeo-
phyceae show characteristics more like those of normally
submerged algae than the intertidal algae studied by
Johnston & Raven [82–84], Surif & Raven [85,86] and Johnston
[32]. Examples of the inorganic C affinity and O2 sensitivity of
photosynthesis by other members of the Phaeophyceae are
provided by Black et al. [88], Downton et al. [89], Burris [90],
Dromgoole [91,92] and Raven et al. [71–73]: see review by
Raven & Hurd [95].

The general assumption is that the CCM is based on the
direct or indirect use of external HCO!3 rather than on
active influx of CO2. HCO!3 use could involve direct HCO!3
transport using an anion transport protein in the
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plasmalemma that is usually detected in macroalgae by
inhibition of photosynthesis by DIDS and/or SITS (40-
acetamido-40-isothiocyantostilbene-2,2-disulfonic acid). Such
transport is known for the gametophyte, but not for the spor-
ophyte phase of the kelp Undaria pinnatifida [96] and for the
sporophyte phase (gametophyte not examined) of the giant
kelp Macrocystis pyrifera over a wide range of pH values
[28]. No inhibition of photosynthesis by DIDS was found
for the members of the Desmarestiales, Fucales, Laminariales,
Sphacelariales or Scytosiphonales studied by Larsson &
Axelsson [97] or Zou & Gao [74]. Evidence of HCO!3 entry
in E. siliculosus (Ectocarpales) comes from experiments at an
external pH of 9.5, where CO2 is less than 0.23 mmol m23

[98]. In these experiments, the photosynthetic rate at pH 9.5
was still 30% of that at pH 7.9 and was insensitive to buffer-
ing of the medium with 50 mol m23 of either cationic or
anionic pH buffers, or to inhibition of external carbonic anhy-
drase, thus ruling out the mechanism of HCO!3 use discussed
in the two following paragraphs [98]. HCO!3 entry could
account for part of the photosynthesis of E. siliculosus at an
external pH of 7.9–8.2 ([98]; cf. [99]). At an external pH of
8 in photosynthesis-saturating red light, E. siliculosus accumu-
lates 4–5 mol m23 inorganic C, i.e. about twice the external
concentration; this internal pool is decreased to about
2 mol m23 when blue light is added, with photosynthetic
consumption of the released inorganic C [100].

The alternative mechanism is based on localized acidifica-
tion of the surface of the organism using energized Hþ efflux,
although the diffusion boundary layer of photosynthesizing
cells is at a higher pH than the bulk medium [101]. The acid
zones have an equilibrium CO2: HCO!3 ratio that increases
by an order of magnitude with each pH unit decrease,
and there is also an order of magnitude increase in the rate
of uncatalysed HCO!3 conversion to CO2 [101]. The higher
concentration of CO2 at the cell surface has two fates; one is
to leak back to the bulk phase, the other is a biologically
useful diffusion into the cell to Rubisco. This mechanism is
commonly supplemented by the presence of extracellular car-
bonic anhydrase [102]. The generation of surface acid areas to
facilitate CO2 diffusion towards Rubisco is well characterized
in freshwater Charales and some submerged freshwater flow-
ering plants, where each acid zone has an area of more than
1 mm2. Price & Badger [103] showed that this mechanism of
HCO!3 use is inhibited by higher concentrations (20–
50 mol m23) of pH buffers of an appropriate pKa. Such
attempts that have been made to identify acid zones on the sur-
face of the Phaeophyceae during photosynthesis have not
identified areas in the square millimetres [95], although the
techniques used were not suited to identifying smaller acid
areas. Transient surface acidification occurring with blue
light added to photosynthesis-saturating red light in a range
of brown algae [104] shows that surface acidification can
occur during photosynthesis in the Phaeophyceae.

In the absence of direct measurements of sustained loca-
lized surface acidification, the occurrence of a CCM of the
kind proposed by Walker et al. [101] has been suggested (see
discussion above) on the basis of inhibition of photosynthesis
by pH buffers and by inhibitors of extracellular carbonic anhy-
drases. Sometimes the absence of inhibition by the HCO!3
transporter inhibitors DIDS and SITS has also been used as
negative evidence for acid zone-dependent CCMs. Support
for a Walker et al. style [101] CCM by the use of purpor-
ted inhibitors of Hþ efflux catalysed by plasmalemma

Hþ-ATPase is equivocal because the Hþ gradient generated
could also be used to indirectly energize a Naþ–HCO3

2 sym-
port influx of HCO!3 . With these provisos, the mechanism
that occurs in the Laminariales other than gametophytes of
U. pinnatifida and sporophytes of M. pyrifera is consistent
with a mechanism based on that described by Walker et al.
[101] for Chara ([105–107]; see also [108,109], as is some
evidence for this mechanism in a member of the
Scytosiphonales [74], but not for a member of the Fucales [77]).

Despite the occurrence of CCMs, most brown algae lack
pyrenoids although these structures have evolved indepen-
dently in several clades of the Phaeophyceae [9,28,78,110,111].

The genome of Ectocarpus siliculosa contains a putative
Naþ–HCO3

2 transporter targeted to the chloroplast, and a
putative Cl2–HCO3

2 transporter with no clear targeting
[112,113]. Nakajima et al. [11] and Poliner et al. [65] found
two SLC4 HCO!3 transporters in the genome of E. siliculosa;
other Ochrophyta have two (in the eustigmatophycean
N. oceanica and the centric diatom T. pseudonana) and four
(in the pennate diatom P. tricornutum) SLC4 genes. The
P. tricornutum PtSLC4-2 is targeted to the plasmalemma, is
inhibited by the anion transporter inhibitor DIDS and is
Naþ-dependent. Ye et al. [114] report the genome sequence of
the kelp (Laminariales) Saccharina japonica; the analysis by Bi
& Zhou [115], however, does not mention HCO!3 transporters
or Hþ-ATPases, but does show a range of carbonic anhydrases.
Genomic data indicate the occurrence of many of the enzymes
of the photorespiratory carbon oxidation cycle [112].

(e) Raphidophyceae and Tribophyceae
Little is known of the inorganic C acquisition by the Raphido-
phyceae, other than Rubisco kinetics [33,116]. The in vitro K0.5

for CO2 of Rubisco in the marine Olisthodiscus luteus is
45 mmol m23 at 238C (table 2); for the marine Heterosigma
carterae, the K0.5 for inorganic C dependence of the rate of photo-
synthesis in vivo, expressed in terms of CO2, is 3 mmol m23 at
168C [117]. This difference suggests that a CCM is operative in
the algae of this class. The pH drift work of Nimer et al. [118]
indicated low photosynthetic rates for the marine Heterosigma
akashiwo; little can be deduced from these data about the
mode of inorganic C acquisition. Pyrenoids seem to be universal
in the Raphidophyceae [119]. For the Tribophyceae (i.e. Xantho-
phyceae), the only data are those of Beardall and Entwisle [120]
on the terrestrial–freshwater Botrydiopsis intercedens. In this
species, internal inorganic C accumulation occurs to a greater
extent than it would for diffusive CO2 entry, in accord with
the pH gradient; this is suggestive of the operation of a CCM.
Several members of the Tribophyceae have pyrenoids [9]
though there seem to be no data on B. intercedens. There are no
data on inorganic C acquisition by the sister clade to the di-
atoms, the Bolidiophyceae, now known to have the Parmales
as the silicified cyst phase [121].

( f ) Pyrenoids and CO2 concentrating mechanisms
As indicated above for individual taxa, pyrenoids seem to be
essential features of some CCMs based on active transport
across membranes [9,113]. However, pyrenoids occur in
some species of the Chrysophyceae and Synurophyceae,
classes that uniformly lack CCMs, while the Phaeophyceae,
apparently with CCMs in all taxa, generally lack pyrenoids,
with several independent origins of pyrenoids. In the Eustig-
matophyceae, all members investigated have CCMs and
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pyrenoids. In the Synchromophyceae, a condensed pyrenoid
is often present in the chloroplast stroma [8], although there is
no evidence on the occurrence of CCMs in this class. This is
also the case for the Pelagophyceae, in which Aureaumbra
(at least) has pyrenoids [122].

4. Inorganic C assimilation in Ochrophyta other
than diatoms

(a) Introduction
All photosynthetic, eukaryotic C assimilation pathways have
the photosynthetic carbon reduction cycle (PCRC, or Calvin–
Benson cycle), with Rubisco as the carboxylase, at their core.
Raven et al. [25] discussed alternative inorganic C assimilation
pathways found in some autotrophic Archaea and Bacteria,
and energetic, inorganic C affinity and O2 damage as reasons
why many of them are not appropriate for functioning in the
present atmosphere. In some organisms, the PCRC is down-
stream of diffusive entry, in others it is downstream of a
‘biophysical’ CCM based on active transport of HCO!3 , CO2

or Hþ to produce C3 photosynthetic biochemistry. In some oxy-
genic photosynthetic organisms, the PCRC is downstream of a
C3–C4 cycle in C4 photosynthesis; this is a ‘biochemical’ CCM,
although it occurs downstream of a ‘biophysical’ CCM in some
aquatic flowering plants. In C4 photosynthesis, there is close
temporal coupling of the C3–C4 and PCRC cycles with small
pool sizes of the C4 and C3 intermediates. Another upstream
C3–C4 cycle contributes to crassulacean acid metabolism
(CAM); here there is a temporal lag of about 12 h between
the scotophase acidication with CO2 fixation into malate,
which is stored as malic acid in vacuoles, and deacidification
in the photophase, where CO2 is released by decarboxylation
of malic acid, and refixed by Rubisco and the PCRC, with the
C3 moiety from malate decarboxylation stored until the next
scotophase as mono- or polysaccharide.

The biochemistry of autotrophic CO2 assimilation was
determined in pre-molecular biology by two main methods.
One was short-time (seconds) exposure of the organism to
14CO2 (terrestrial organisms) or 14C inorganic C (aquatic organ-
isms) in the light, followed by rapidly killing the organism and
quantification of the water- or ethanol-soluble organic com-
pounds labelled with 14C. C3 biochemistry is characterized by
3-phosphoglycerate (PGA) as the initial labelled compound,
followed by PCRC sugar phosphates and then compounds
derived from the PCRC; labelling of C4 dicarboxylic acids in
anaplerotic processes is only a few percent of that through the
PCRC. C4 biochemistry has C4 dicarboxylic acids as the initial
labelled products, followed by PGA and other PCRC com-
pounds; a few seconds labelling (pulse) followed by a change
back to unlabelled inorganic C (chase) shows a decrease in
label in PGA and an increase in label in C4 dicarboxylic acids.
This was the method used in the 1950s and 1960s to establish
the C3 pathway of autotrophic inorganic C assimilation in
green microalgae (Chlorella, Scenedesmus) and the terrestrial
flowering plant Hordeum, and the C4 pathway in the terrestrial
flowering plants Saccharum and Zea. The other, much less deci-
sive, method is determination of the activity of carboxylase
enzymes in cell extracts; a high Rubisco : PEPC (phosphoenol-
pyruvate carboxylase-oxygenase) activity ratio has been taken
to indicate C3 biochemistry, and a low ratio (less than 1) is
suggestive of C4 biochemistry.

(b) Phaeophyceae
Both the kinetics of labelling of organic compounds after
addition of 14C inorganic C and the in vitro activity of car-
boxylases methods have been applied to the Phaeophyceae
[32,123–128]. The kinetics of the 14C-inorganic C labelling
method shows C3 biochemistry in a range of brown
algae [32,123,127–129]. In the brown algae examined by
Küppers & Kremer [130], Kremer [129] and Hillrichs &
Schmid [127] there is significant labelling of C4 acids (aspartate,
malate) in the light, and the time course of the label position
within aspartate shows that the PEP comes from photosynthe-
tic 3-PGA, with slower incorporation of 14C-inorganic C into
the b-carboxyl of aspartate by phosphoenolpyruvate carboxy-
kinase (PEPCK) or, more likely, PEPC. The ratio of
14C-inorganic C labelling of organic C (initially mainly into
aspartate and malate) by carboxylation of PEP to that carried
out by Rubisco is lowest in mature tissue and highest in growing
tissue, consistent with an anaplerotic role of PEP carboxylation,
although the rates may be higher than the anaplerotic require-
ment [129,130]. 14C-inorganic C labelling of organic C (mainly
aspartate and malate) occurs in the dark at a rate higher than
that of green and red marine macroalgae and is also probably
higher than the anaplerotic requirement [129]. As indicated
below, in some fucoids, a part of this dark 14C–inorganic C
assimilation can be attributed to low amplitude CAM.

Possibly related to the labelling of C4 acids mentioned
above is the finding of a ‘buffer system’ taking up (at high
pH in the dark) and releasing (at normal seawater pH in the
light) inorganic C, as indicated by stimulation of O2 production
in the light in North Atlantic intertidal members of the Fucales
(species of Ascophyllum, Fucus and Pelvetia; all Fucaceae)
[131,132]. This ‘buffer system’ is associated with Hþ exchange
between seawater and the algae, is not found in other subtidal
brown algae examined, i.e. Halidrys, Fucales (Cystosieraceae),
Desmarestia (Desmarestiales) and Laminaria (Laminariales),
and is paralleled by a particular spatial organization of orga-
nelles in the outer cell layer (meristoderm) of the thallus
[131,132]. A more widespread phenomenon among brown
algae is the stimulation of photosynthesis by additional blue
light to already saturating red light [133,134], which involves
release in blue light of at least some of the inorganic C from
an intracellular pool accumulated in red light [100]. The blue
light effect was not found in the only diatom examined,
P. tricornutum [133]. Possibly related to the two preceding
sets of data, but probably not, is the interesting finding in the
work of Johnston [32] on 14C inorganic C pulse-chase incorpor-
ation in the North Atlantic intertidal Ascophyllum nodosum of a
continued increase in label incorporation in organic com-
pounds in the chase period, in algae collected in July 1998
but not in January 1988. After a 5 s pulse in July 1988, the
increase in label of organic C seems to be saturated at the long-
est time period tested (300 s) at about eight times the organic C
label at the end of the pulse period. This requires a very
substantial accumulation of an acid labile pool of either inor-
ganic C or of an acid-labile organic C compound in the 5 s
pulse, with incorporation into a range of acid-stable com-
pounds in the chase period. Kawamitsu and Boyer [135] used
the North Atlantic intertidal Fucus vesiculosus and showed
that, after exposure to light in seawater, photosynthetic O2 pro-
duction continued for a decreasing rate over 2 h in CO2 free air.
A small fraction of the C store on which this O2 production was
based was inorganic C; most of it was organic, presumably (an)
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organic acid(s). Unlike CAM, and the work of Axelsson et al.
[131,132], this C store was not filled during the scotophase
[135], although there is evidence of minor CAM inorganic C
assimilation in several fucoid brown algae including F. vesicu-
losus [136]. Axelsson et al. [131,132] comment that their
‘photosynthetic buffer’ may be related to the very low CAM
activity found in the species showing the ‘photosynthetic
buffer’.

The enzyme analyses showed significant activity of
PEPCK, but higher activities of Rubisco [32,123,126]. PEPC
activity could not be detected in these investigations, includ-
ing that of Busch & Schmid [126] on E. siliculosus, although
genomic evidence indicates that PEPC occurs in this alga [112].

The most recent tool for distinguishing between C3 and C4

(and CAM) photosynthetic biochemistry is genomics and tran-
scriptomics. However, the presence of genes encoding
enzymes used in C4 (and CAM) photosynthesis such as
PEPC, PEPCK, PPDK (phosphate pyruvate dikinase, some-
times considered for diagnostic C4 photosynthesis), MDH
(malate dehydrogenase), NADP-ME (NADP malic enzyme)
and NAD-ME (NAD malic enzyme), is not of itself sufficient
to show that C4 photosynthesis occurs. One reason is that the
enzymes have other functions and occur in photosynthetic
organisms known to use C3 biochemistry [137,138]. Another
is that the enzyme might not be expressed in an intracellular
location compatible with C4 photosynthesis [139]. Bi & Zhou
[115] have produced a generalized diagram (their fig. 1) includ-
ing C4 photosynthesis and list genes [114] compatible with the
PEPCK C4 mechanism (granted appropriate intracellular local-
ization of the enzymes), but this is not evidence demonstrating
that C4 photosynthesis occurs. The conclusion of Gravot et al.
[112] is that there is not clear evidence from genome analysis
as to the occurrence of C4 photosynthesis in the model brown
alga E. siliculosus.

The other inorganic C assimilation pathway found in the
Phaeophyceae is very low amplitude CAM in some members
of the Fucales, but not in other orders of the brown algae
[112,136].

(c) Raphidophyceae and Eustigmatophyceae
For other photosynthetic Ochrophyta, Descolas-Gros &
Oriol [140] found activity of PEPCK but not PEPC in
H. akashiwo (Raphidophyceae). However, PEPC was found
in the proteome of another raphidophycean, Aureococcus
anophagefferens [141].

Genomic data on N. gaditana (Eustigmatophyceae) shows
PEPC, MDH (NAD(P) malic dehydrogenase) and PPDK in
the cytosol, and NAD(P)-ME in the chloroplast, that could
be part of C4 photosynthetic biochemistry, as well as
pyruvate carboxylase (PC) in the mitochondria (fig. 6 of [21]).

Genomic data on N. oceanica CCMP1779 (Eustigmatophy-
ceae) show the presence of PEPC, MDH, PPDK and NAD(P)-
ME, but the intracellular location is not indicated (table S10
of [22]). Vieler et al. [22] (their table S10) show that expression
of probable inorganic C transporters is increased at low CO2

concentrations, but make no comment about the effects of
CO2 on expression of the enzymes that could be involved in
C4 photosynthesis. Li et al. [69] used transcriptomic data on
N. oceanica IMET1 to predict the location of enzymes that
could be part of a C4 photosynthesis and found that enzyme
location is not entirely as required for an effective C4 pathway. Ta

bl
e

3.
Su

m
m

ar
y

of
m

ec
ha

nis
m

s
of

ino
rg

an
ic

ca
rb

on
ac

qu
isi

tio
n

an
d

as
sim

ila
tio

n
am

on
g

cla
sse

si
n

th
e

Oc
hr

op
hy

ta
.N

o
da

ta
are

av
ail

ab
le

fo
rt

he
Au

rea
no

ph
yc

ea
e,

Bo
lid

op
hy

ce
ae

,C
hr

ys
om

er
ido

ph
yc

ea
e,

Di
cty

oc
ho

ph
yc

ea
e,

Pe
lag

op
hy

ce
ae

,
Ph

ae
ot

ha
m

nio
ph

yc
ea

e,
Pin

gu
iop

hy
ce

ae
,S

ch
izo

cla
dio

ph
yc

ea
e

an
d

Sy
nc

hr
om

op
hy

ce
ae

.S
ee

th
e

m
ain

tex
tf

or
de

ta
ils

.

cla
ss

Ru
bi

sc
o

ki
ne

tic
s

di
ffu

siv
e

CO
2

en
try

CC
M

C 3
bi

oc
he

m
ist

ry
C 4

bi
oc

he
m

ist
ry

CA
M

ph
ag

ot
ro

ph
y

Ba
cil

lar
iop

hy
ce

ae
ye

s
no

ye
s

ye
s

C 3
–

C 4
in

so
m

e?
no

no

Ch
rys

op
hy

ce
ae

no
da

ta
ye

s
no

as
su

m
ed

C 3
no

da
ta

un
lik

ely
no

Eu
sti

gm
ato

ph
yc

ea
e

ye
s

no
ye

s
as

su
m

ed
C 3

?
un

lik
ely

no

Ph
ae

op
hy

ce
ae

ye
s

no
ye

s
ye

s
so

m
e

pr
od

uc
tio

n
of

C 4
ac

ids
in

th
e

lig
ht

low
am

pli
tu

de
in

so
m

e
sp

ec
ies

low
am

pli
tu

de
in

so
m

e
sp

ec
ies

Ra
ph

ido
ph

yc
ea

e
ye

s
pr

ob
ab

ly
no

t
pr

ob
ab

ly
ye

s
no

da
ta

no
da

ta
un

lik
ely

no

Sy
nu

ro
ph

yc
ea

e
ye

s
ye

s
no

no
da

ta
no

da
ta

un
lik

ely
no

Tri
bo

ph
yc

ea
e

no
da

ta
no

ye
s

no
da

ta
no

da
ta

un
lik

ely
no

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

372:20160400

7

 on July 17, 2017http://rstb.royalsocietypublishing.org/Downloaded from 

http://rstb.royalsocietypublishing.org/


5. Conclusion
We only have a significant body of information on inorganic C
acquisition and assimilation for four non-diatom classes of
Ochrophyta, i.e. the Chrysophyceae, Eustigmatophyceae,
Phaeophyceae and Synurophyceae, with some information
on the Raphidophyceae and Tribophyceae (table 3). Diffusive
CO2 entry from the bulk medium to Rubisco occurs in the
Chrysophyceae and Synurophyceae, while the Eustigmato-
phyceae and Phaeophyceae have CCMs involving influx of
HCO!3 and/or CO2 (table 3).

The Phaeophyceae is the only class for which there
is biochemical evidence on the pathway of inorganic C
assimilation, showing that there is predominantly C3 bio-
chemistry, but with occasional elements of C4 biochemistry
and low-amplitude CAM in some members of the Fucales.

The energization of CCMs involves active influx of HCO!3
or active efflux of Hþ at the plasmalemma, with little or no
role for C4 biochemistry, and no net inorganic C entry in
the dark in the few brown algae with low amplitude CAM.
The distribution of pyrenoids does not completely parallel
that of CCMs based on active transport across membranes.

Molecular genetic investigation has not provided definitive
evidence as to the occurrence of C4 photosynthesis and has
indicated possible membrane transporters involved in CCMs.
Some members of the Fucaceae, and Ectocarpus, have

incompletely explained inorganic C reservoirs, as inorganic C
and/or as (presumably) carboxylate C that can be readily con-
verted to inorganic C.

Returning to the topic of the other papers in this thematic
issue, i.e. C metabolism in the Bacillariophyceae, the other
classes of Ochrophyta for which information is available
show a greater diversity of mechanisms of inorganic C acqui-
sition and biochemistry of autotrophic CO2 assimilation. The
occurrence of CCMs is less widespread among other ochro-
phytes than in diatoms, as is the correlation between the
occurrence of CCMs and the presence of pyrenoids. While C4

or C4-like photosynthetic metabolism is a possibility in both
diatoms and other ochrophytes, no diatom is known to have
the low-amplitude CAM found in some fucalean brown algae.
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